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The amplitude equations governing the nonlinear interaction among normal modes are 
derived for a multilayer quasi-geostrophic channel. The set of normal modes can 
represent any wavy disturbance to a parallel shear flow, which may be stable or 
unstable. Orthogonality in the sense of pseudomomentum or pseudoenergy is used to 
obtain the amplitude equations in a direct fashion, and pseudoenergy and 
pseudomomentum conservation laws permit the properties of the interaction 
coefficients to be deduced. Particular attention is paid to triads exhibiting explosive 
resonant interaction, as they lead to nonlinear instability of the basic flow. The 
relationship between this mechanism and the most recently discovered nonlinear 
stability conditions is discussed. 

Situations in which the basic velocity is constant in each layer are treated in detail. 
A particular formulation of the stability condition is given that emphasizes the close 
connection between linear and nonlinear stability. It is established that this stability 
condition is also a necessary condition: when it is not satisfied, and when the flow is 
linearly stable, explosive resonant interaction of baroclinic Rossby waves acts as a 
destabilizing mechanism. Two- and three-layer models are specifically considered : 
their stability features are presented in the form of stability diagrams, and interaction 
coefficients are calculated in particular cases. 

1. Introduction 
Baroclinic instability has long been recognized as playing a dominant role in both 

atmospheric and oceanic circulation, and has been one of the most widely studied 
phenomena in geophysical fluid dynamics. A variety of models have been analysed, 
initially by linear theory and then by weakly nonlinear theory. The nonlinear studies 
often address the evolution of an unstable mode in a slightly supercritical flow and 
predict its final stabilization. Quasi-geostrophic models, and layered models in 
particular, have been much used in this respect, owing to their great simplicity (see 
Pedlosky I987 and references therein). Recently, such models have received renewed 
attention thanks to properties derived from energy-Casimir and momentum-Casimir 
conservation laws. Two related results have essentially been obtained : sufficient 
(Arnol’d-like) conditions of nonlinear stability (Shepherd 1988, 1993 ; Ripa 1991, 1992, 
1993; Mu Mu 1991; Mu Mu et al. 1994; see also McIntyre & Shepherd 1987), and 
explicit bounds on the disturbance energy and potential enstrophy (Shepherd 1988, 
1993; Mu Mu 1991 ; Mu Mu et al. 1994). Although those bounds exist only when 
stability is proved, they have been used by Shepherd (1988, 1993) to investigate the 
saturation of unstable flows. 
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In general, comparison between the nonlinear stability conditions and the linear 
(normal modes) instability conditions reveals that they do not coincide everywhere in 
parameter space. Two explanations can be advanced: (a )  the nonlinear stability 
conditions, being only sufficient, could still be improved (as has been the case for the 
papers of Mu Mu 1991, Ripa 1992, 1993; see Mu Mu et al. 1994); (b) there exist 
nonlinear mechanisms capable of amplifying infinitesimal initial disturbances. The 
latter explanation should not be surprising: it is well known that the stability of a 
linearized system does not imply the stability of the original nonlinear system, even to 
arbitrarily small disturbances. Furthermore, such a mechanism has been pointed out 
in layered models of irrotational flows: Cairns (1979) and Craik & Adam (1979) have 
shown that a resonant triad of gravity waves can extract energy from the basic flow so 
that the three triad members grow simultaneously. This process, called explosive 
resonant interaction (ERI), is intimately related to the concept of negative wave 
(pseudo-) energy (see Cairns 1979; Craik 1985; Ripa 1990) and has been proved to 
render Cairns’s three-layer model unstable in linearly subcritical conditions. 

In the context of quasi-geostrophic flows, ERI has seldom been mentioned, although 
a number of papers deal with nonlinear interaction between Rossby waves (see Jones 
1979a, b). Nevertheless, Romanova (1987) has addressed the question using a three- 
layer model, with constant velocity in each layer, and has shown that IRE may occur 
provided that the system is linearly unstable. Her model is infinite in the meridional 
direction and the linear stability condition coincides with the nonlinear condition 
obtained through the analogue of Arnol’d’s first theorem. However, boundary 
constraints are known to stabilize quasi-geostrophic flows by imposing a minimum 
scale on the disturbance (see McIntyre & Shepherd 1987, $6).  A finite channel width 
thus introduces new stability conditions whose nonlinear version is directly related to 
Arnol’d’s second theorem (Mu Mu 1991; Ripa 1992, 1993; Mu Mu et al. 1994). The 
present paper specifically discusses that point in connection with the ERI of baroclinic 
Rossby waves. In particular, we show that Romanova’s three-layer model can be made 
linearly stable by imposing boundary constraints, while it remains nonlinearly 
unstable. In that case, ERI provides the necessary mechanism to make disturbances 
grow. 

The possibility of ERI within a triad depends on the sign of the interaction 
coefficients which parameterize the coupled influence of two waves on the third one. 
These coefficients can be directly related to the quadratic invariants corresponding to 
each wave, this relation leading to a simple criterion for ERI (see Craik 1985). In most 
previous works, the conserved quantity is the wave energy, but it seems more general 
to discuss the problem in terms of pseudoenergy and pseudomomentum, following 
Becker & Grimshaw (1993) and Vanneste & Vial (1995, hereafter referred to as VV). 
(Ripa 1990 gives an illuminating comparison between the concepts of wave energy 
(momentum) and pseudoenergy (pseudomomentum) in various frameworks.) To 
obtain the interaction coefficients, one usually introduces a multiple scale expansion, 
either in the basic equations or in a (Lagrangian) variational principle. This technique 
requires a large amount of algebra and does not seem very suitable for the general 
multilayer model we consider. Here, we adapt for that model the method described in 
VV, i.e. the rigorous expansion of the basic equations in normal modes. Orthogonality 
in the sense of pseudomomentum or pseudoenergy (Held 1985) is used to derive the 
evolution equations for the mode amplitudes. The properties of the interaction 
coefficients are directly deduced from the conservation laws of pseudomomentum and 
pseudoenergy, without requiring manipulation of the explicit expression of the 
coefficients. We introduce an important improvement to VV : the expansion remains 
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valid for linearly unstable basic flows, the modes involved being stable, unstable or 
marginally stable. It is essential to emphasize that the method is useful for a wide class 
of models, as illustrated by the different physical systems considered in VV and in this 
paper. Our approach is also closely related to that of Romanova (1992), who uses an 
explicit Hamiltonian formulation to work out the normal modes expansion. However, 
her study concerns mainly the linear part of the equations. 

In this paper, we develop a general formulation of the problem of nonlinear 
interaction of baroclinic Rossby waves propagating in a parallel shear flow. We use the 
quasi-geostrophic N-layer model, whose governing equations are briefly outlined in $2. 
The normal modes of the linearized system are presented in $3. We also discuss the 
orthogonality relations in the sense of pseudomomentum and pseudoenergy and 
deduce a consequence of the vanishing of the pseudomomentum for unstable modes. 
In $4, we expand the nonlinear equations in a series of normal modes, and obtain the 
evolution equations for their amplitudes. Particular attention is paid to marginally 
stable modes whose amplitude equations remain coupled. In $ 5 ,  conservation of 
pseudomomentum and pseudoenergy is used to derive relations between the interaction 
coefficients. Such relations are particularly useful since they permit the linking of the 
three coefficients appearing in the resonant triad equations to a single constant. With 
the aid of these results, we discuss a generalization of Hasselmann’s criterion for wave 
instability through nonlinear interaction. The condition of existence of ERI is then 
stated in terms of the frequency and pseudoenergy of the modes and, equivalently, in 
terms of their wavenumber and pseudomomentum. In $6, we restrict our attention to 
what we shall call generalized Phillips models, namely multilayer models with constant 
velocity in each layer. We first give a particular form of the dispersion relation 
analogous to Romanova’s (1992) that is related to the pseudomomentum. The close 
connection between the sufficient stability condition due to Mu Mu e f  al. (1994) and 
the linear eigenvalue problem is pointed out. We derive a simplified version of Mu Mu 
et al.’s criterion that allows us to show that linear and nonlinear stability are equivalent 
in wide regions of the parameter space. However, when a linearly stable system cannot 
be proved nonlinearly stable, it appears to be unstable through ERI. The two- and 
three-layer models are then studied separately and some numerical results for the 
interaction coefficients are presented. Finally, $ 7 is devoted to a concluding discussion. 

2. Basic equations and stability of the N-layer model 
We consider the multilayer quasi-geostrophic model described for instance in 

Pedlosky (1987, $6.16) and used by Mu Mu (1991), Ripa (1992) and Mu Mu et al. 
(1994) for their stability analysis. The notation of the latter paper is largely followed 
here. The buoyany jumps g’ = g@,+, -pt) /po are taken equal in each layer i so that the 
rotational Froude numbers 

satisfy 4 di = const, i = 1, N .  Here f, is the mean Coriolis parameter, po the reference 
density, L a characteristic horizontal scale and dt the depth of the layer i. Basically, the 
governing equations express the conservation in each layer of the potential vorticity 
given by 

4 =f; LZ/(g‘d,) 

N 

8 = V2@, + 4 qj +By, 
j=l 

where dji is the streamfunction, /3 = Po L2/ U is curvature parameter, scaled using a 
reference velocity U,  and where we have introduced the tridiagonal matrix 
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corresponding to rigid vertical boundaries. A particular solution of the evolution 
equations is given by the steady parallel flow Ui(y)  = -dY,(y)/dy, balanced by the 
slope of the interfaces. We are interested in the evolution of small-amplitude 
disturbances to this basic flow and we introduce the classical decomposition 

@, = !Pi+$: and 4 = Qi+ql, 

and 

The dimensionless evolution equations for the disturbance are then given by 

(2.1) 
with Q,, = dQi/dy. 

The invariants of (2. l), connected to its symmetry in t and x, constrain the dynamics 
of the system. Among them, pseudoenergy and pseudomomentum, which are quadratic 
to lowest order, are the most useful. Their finite-amplitude expressions have been 
deduced by Ripa (1992) and Mu Mu et ul. (1994) (see also Shepherd 1988, 1993) and 
their density can be written 

(a t  + ui a,) 4; + Qiy a, $; + J($i, 41) = 0, 

(2.2b) 

where Yi(Qi) and K(Q,) are the inverse functions of Q, (!Pi) and Q i ( y ) ,  respectively. 
It is now convenient to introduce a weighted streamfunction and potential vorticity, 

namely 

Their governing equations can then be cast in a vector form 

a,ki = F;’I2 $; and qi = F;”‘ 4;. 

(a, + ua,)q - L a, V +  S(V, 4)  = 0, 

4 = DV,  

with D = /V2 +KTK, where / is the identity matrix and K = diag (FZ’”). Owing to the 
particular definition of the streamfunction and potential vorticity vectors yt and q, D 
is a Hermitian operator with respect to the inner product ( q , p )  = j j s q * p d s ,  a 
property which will prove useful throughout this paper. The matrices U and L depend 
only on the basic flow and are given by 

U = diag (U,) and L = diag (- Qiy), 

(2.3) 
where = ($i)T and q = (qi)T. These two vectors are related by 

while S(ry,q) is the vector of the nonlinear terms, with components 

si = F y 2  J($,, 4i). 
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We consider the flow in a channel which is infinite in the x-direction and is of 
dimensional width IL in the y-direction, so that the boundary conditions read 

pz=O and a, pydx=O for y = O , l .  (2.4) s 
The quadratic parts of the pseudoenergy and of the pseudomomentum are the 
conserved densities of the linearized equations. They will be used in the following. They 
can be deduced from (2.2) or by direct manipulation of the linearized version of (2.3). 
and take a simple form 

with 

The multilayer quasi-geostrophic model has recently received much attention since it 
has been found that analogues of Arnol'd's stability theorems can be deduced to prove 
its nonlinear (normed) stability. The first theorem (Holm et al. 1985; Ripa 1992) is 
based on the positive definiteness of E-aP, and guarantees stability if there exists any 
value of a such that 

The analogue of Arnol'd's second theorem has led to several sufficient conditions, 
among which the strongest is due to Mu Mu et al. (1994, see also Ripa 1992). Nonlinear 
stability is guaranteed if one can find constant yi and a such that 

Q;.(U,-a) < 0, i = 1,N. (2.6) 

(2 .7~)  

and that C - (KO / - K TK)-' (2.7b) 

is a definite positive matrix. In the above, C = diag(y,), and KO is the eigenvalue of 
a differential problem (KO = ( ~ / 1 ) ~  is the channel model with rigid vertical boundaries). 

3. Normal modes and orthogonality relations 
We now turn to the analysis of the normal modes of the system which are solutions 

of the linearized version of (2.3). The linearized version of (2.3) can be written in the 
form 

where N =- L-W-D-' involves the non-local operator D-' which is defined with 
homogeneous boundary conditions. Since D is Hermitian, and U and L are diagonal 
real matrices, N is also a Hermitian operator. For a particular zonal wavenumber k,, 
the solution of (3.1) can be found in the form q = qa(y) exp [ik,(x- c, t)] by solving the 
eigenvalue problem 

with 

We denote by N, the operator N where the substitution a, t ik, has been made. The 
subscript Q of the eigenvector q, and of the eigenvalue c,  denotes the double 
dependence on (k,,n,), where n, is used to distinguish the different solutions to (3.2) 

apq+Na,q = 0, (3.1) 

N u  4,(Y) = c,  L-'q,(J% 

qa(0 )  = q a ( 0  = 0. 

(3.2) 
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corresponding to the same ka. The spectrum of the eigenvalues is discrete only if the 
basic velocity is constant in each layer; otherwise it has continuous parts, with ca in any 
of the ranges [min, Ui,  max, U,],  i = 1, N .  In these continuous parts, the eigenvector qa 
possesses a singularity at values of y such that Ui(y )  = ca. Note that the boundary 
conditions prescribe vanishing circulation for the disturbance. 

As N, is Hermitian, orthogonality relations between the normal modes are easily 
derived. First, two solutions of (3.1) with different zonal wavenumbers are always 
orthogonal in the sense that the mean of their product (along the infinite length of the 
channel) vanishes. We can thus concentrate on the y dependence and consider two 
eigenvectors qa and qb with the same wavenumber k, = kb so that N, = N,. The first 
orthogonality relation is deduced from (3.2) by noting that 

[ (ca)*  - c b l  iqa, f - ' q b )  = O, 
where the inner product of two vectors is defined by 

h P J  = 4*PdY. J-: 
Since Na and f are real operators, the orthogonality relation can be explicitly written 
as 

(3.3) 
where = 0 otherwise. As can be seen by comparing 
(2.5 b)  and (3.3), the latter expression extends to the multilayer model the orthogonality 
relation (in the sense of pseudomomentum) first introduced by Held (1985; see also 
VV). In (3.3), we use the notation 8 to emphasize that the interpretation in terms of 
pseudomomentum differs according to the stability of mode b. A stable mode s for 
which c,, and therefore qs are real, corresponds to a Rossby wave modified by the basic 
shear. It contributes to the pseudomomentum in an isolated way and we can refer to 
this contribution as the wave pseudomomentum P, = E.  On the other hand, an 
unstable mode u, for which c, has a non-zero imaginary part, contributes to the 
pseudomomentum only through its coupling with the mode u* corresponding to the 
conjugate phase velocity (c,)*. We can denote R ,  = p, the contribution of such a 
growing-decaying pair of modes. That an isolated growing mode has vanishing 
pseudomomentum is directly related to the fact that the pseudomomentum is a 
conserved quadratic quantity (Held 1985): in some sense, a mode can be unstable and 
grow only if it is weightless (see Ripa 1990). As noted by Ripa (1990), this fact can be 
used to deduce bounds on the phase velocity of unstable waves. In the multilayer quasi- 
geostrophic model, the definition of f ,  and subsequent integration by parts, yield an 
explicit expression for a mode's pseudomomentum, 

where xa = V-Iyar V = U -ca /. For an unstable mode, the vanishing of this quantity 
leads to an expression for the real part of the phase velocity 

{qa, - l q b }  = &a*,b 6, 
= 1 if (qa)* = q,, and 

{qa,' - ' q R }  = -Re((Xa,y, VXa,,}+k2(Xa, VXa>-(x,, VKTKXaJ-/3Xa,Xa)/2), 

Now, the eigenvalues of KTK are non-positive (Liu Yongming & Mu Mu 1992) and 
the Poincare inequality gives the bounds 

< Re(ca) < max Ui 
2[k2 + (7r/1)'] i .  Y 

min Ui- 
i., 
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which are similar to those obtained for a vertically continuous model (e.g. Pedlosky 
1987, 57.5). 

Once the solutions of (3.2) are known, the solution of the evolution equations (3.1) 
is readily found: it can be expressed as the superposition of modes qa with the time 
dependence exp (-iw, t )  where w, = ka ca. However, for particular k, the situation can 
be complicated by the presence of marginally stable modes which correspond to the 
existence of multiple real eigenvalues with dependent eigenvectors. Here we consider 
only the case of a double root, say c,, in the same manner as Romanova (1992). The 
corresponding general solution can be written 

q(y,  t )  = 4,J.v) exp ik,(x - c ,  t )  - ik, q m , ( . y )  t exp ik,(x - c,, t ) ,  

where q,, and q,, satisfy 

(3.5a, 6)  

As q,, is the limit between stable and unstable modes, it is obvious that {q, , L-lq } = 
0, so that the non-homogeneous equation has a solution even though the operator 
N,-c,L-' is singular. This solution can easily be shown to have the form 

m, 

q m ,  = qh, +Wrn,- 

where the prime indicates the derivative with respect to c, and where p is an arbitrary 
constant. An appropriate choice of this constant leads to the orthogonality relation 
{qm,, L-'q,,o) = 0. Thus the marginally stable modes have a single contribution to the 
pseudomomentum S ,  = {q,,, L -'qm,}. 

The orthogonality relations deduced above are useful because they show that the 
pseudomomentum can be decomposed into independent contributions from each 
stable mode, each growing-decaying pair of modes, and each pair of modes 
corresponding to marginal stability. The same is true for the pseudoenergy and can be 
demonstrated using the orthogonality relations in the sense of pseudoenergy. These 
relations are easily found by rewriting the eigenvalue problem (3.1) as 

Ra q a  = ca Na 4, 

and by noting that R, = N , L N ,  is Hermitian. It turns out that 

{qa. N b  qb} = ' a * .  b Eb - 
and that = cb Pb. 

(3.6) 

It can be seen from ( 2 . 5 ~ )  that the contribution of an isolated sta,.,: moL2 to the 
pseudoenergy is just given by E, = ES while the contribution of a pair of growing 
decaying modes is F, = Eu. For modes corresponding to marginal stability, it is 
straightforward to show that the following two products do not vanish: {q,,, N ,  q,) = 
S ,  and G, = {q,,, N m q m o } ,  this latter product being related to S ,  through G,, = 
c, S,. The asymmetry between the orthogonality relations in the sense of 
pseudomomentum and of pseudoenergy for the marginally stable mode is merely a 
consequence of a particular choice of p which favours the first kind of orthogonality. 

A more general orthogonality relation can be deduced as 

where = ib - a 5  corresponds to the pseudoenergy in a frame of reference moving 
with velocity a (see VV). However, that relation becomes really useful when modes 
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with l/c, = 0 appear in the system. As it is not the case in the quasi-geostrophic 
models, we mainly use in the next sections the relation (3.3) but it should be kept in 
mind that (3.7) can be necessary for waves that are not baroclinic Rossby waves. 

4. Interaction equations 

modes : 
We now expand the solution of the nonlinear equation (2.3) in a series of normal 

q(x9 Y ,  0 = c c. A,(?) 4,(Y) exp ik,(x - c, 0. (4- 1) 

Here, the sum on k, has to be interpreted as an integral when the domain is unbounded 
in the x-direction. The sum on n, is also an integral where the spectrum of the 
eigenvalues has continuous parts. As N, does not depend on the sign of k,, the mode 
a defined by (k,,n,,c,,q,) and the mode - a  defined by (-k,,n,,(c,)*,(q,)*) are 
normal modes of the system representing the same physical state. The reality of the 
series (4.1) is therefore ensured provided that the modes a and - a  are always 
considered together, and that 

The presence of (c,)* and (q,)* in the definition of mode - a  is required to ensure that 
mode - a  has the same temporal growth (or decay) as mode a when unstable. For 
clarity, it is useful to re-write (4.1) separating the stable, unstable and marginal modes: 

ka na 

= 

4 = x A,(O q s  exp iks(x - cs 0 
S 

+ c [A,(O 4, exp ik,(x - c, t )  + A,.(t)(q,)* exp ik,(x- (c,)*Ol 
11 

The amplitudes of the growing and decaying members of a pair of unstable modes are 
denoted A, and A,., respectively. There is no restriction on the relative values of these 
amplitudes and, in general, A,. + A,. In the following the quadratic part of the 
pseudomomentum and of the pseudoenergy will prove crucial, although we deal with 
the fully nonlinear equations. Owing to the orthogonality relations (3.3) and (3.6), 
respectively, these quantities take the simple form 

(4 .34 PC2) = 3c. P,IA,I2 + c [R,(A,.)*A, +c.c.] + c Sm[(AmI)*Amo+ C.C.]}, 
8 u m 

E'2' = 8x E,IASl2 +C [F,(A,.)*A, +c.c.] + [Gm(AmI)*Amo+c.c. + SmlAmo12]}. 
S U m 

(4.3b) 

The sums contain only one term for each growingdecaying pair of unstable modes or 
for each pair of marginally stable modes. Notice that the factor 4 can be removed 
if one considers the sum only on distinct physical states, i.e. if the sum comprises only 
one term for each pair a and -a.  

For zero-circulation disturbances, the expansion (4.1) or (4.2) is complete and the 
original system of partial differential equations (2.3) can be replaced by an infinite set 
of ordinary differential equations for the amplitudes A,(?). Following VV, these 
equations are obtained by introducing the expansion (4.2) into (2.3) and then by using 
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the orthogonality relations (3.3) as projection operator. For a mode a, either stable or 
unstable, one obtains the equation 

1 
A a  = - c I: A: A: exp (iaQbc t) ,  

b,c 
(4.4a) 

where Qabc = w,+(w,)* +(wc)* is a detuning parameter, and where the interaction 
coefficient is 

1: = [{q:, L-lSb,(W:, 4;)) + b  f-* C ] / F Q -  (4.4b) 

Here S,, designates the vector Sdefined in (2.3) where the Jacobians become J($b, qe) = 
k, $b a, qr - k, q, av $,. All modes satisfying the interaction condition 

ka+kb+kc = 0 (4.5) 

have to be taken into account in the right-hand side of (4.4). Notice that (4.4) implies 
the assumption that does not vanish and therefore does not apply to marginally 
stable modes. For a marginally stable mode m, the projection on qm, and on qm, leads 
to a system of coupled equations for the corresponding amplitudes 

1 
A,, + ik, A,, = - C. I:, A: A: exp (iQmbC t ) ,  

b . c  

( 4 . 6 ~ )  

(4 .6b)  

where the interaction coefficients are 

I:, = [{qm,, L - ' S ~ W ~ * ,  qe*)I +b++cI/Sm 1 
and I:, = [{qrn,, r-lsbc(W,*,4c*)}+bf-*cl/S, .J (4.7) 

The analogue of the linear part of equations (4.4a) and (4.6) has been derived by 
Romanova (1 992) for a multilayer model of gravity waves. In a recent paper, the same 
author treats the problem arising for modes in the vicinity of marginal stability 
(Romanova 1994). For such a mode, the pseudomomentum is infinitesimal and the 
interaction coefficient tends to infinity. Therefore, the hypothesis of weakly nonlinear 
interaction breaks down, even for infinitesimal amplitudes of the modes, and the set of 
equations (4.4a) cannot be easily truncated. From the physical point of view, this 
comes from the fact that the nonlinear interaction of a mode near marginal stability 
cannot be treated without considering its companion mode with which it coalesces at 
the marginal point. Indeed, both modes have the same wavenumber and nearly the 
same frequency. Thus, when one mode is involved in a triad, its companion mode also 
interacts significantly with the other two members of the triad. To solve this problem, 
Romanova's basic idea is the introduction of new independent vectors, which are a 
linear combination of the eigenvectors corresponding to companion modes, in the 
vicinity of the marginal stability. The new vectors are chosen so that they correspond 
to qm, and qm, in the marginal stability limit. 

5. Interaction properties and explosive resonant interaction 
The conservation laws of pseudomomentum and pseudoenergy can be used to 

deduce relations between the three interaction coefficients of a wave triad, in a similar 
manner to that of Ripa (1983) for equatorial waves in a resting fluid. The present 
development extends the results of VV which considered only stable modes. It is worth 
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emphasizing that the results do not depend on the exact nature of the physical system 
studied: they are directly related to the quadratic order of the nonlinearity, and to the 
existence of two exact nonlinear invariants. In particular, they apply to the Boussinesq 
model of gravity waves studied by VV. For simplicity, we extend the notation u and 
u* (used in the previous section to designate conjugate unstable modes) to stable and 
marginally stable modes. By definition, s and s* represent the same stable mode and 
m and m* represent the two modes of marginal stability m, and m,. The quadratic part 
of the pseudomomentum ( 4 . 3 ~ )  then takes the condensed form 

P(2)  = f Fa(&)* A,. 
a 

Here, and contrary to (4.3), the sum on a runs over each individual mode, i.e. a = u, 
a = u* and a = m,, a = m, have to be considered. It is always possible to define a 
coefficient 7,bc invariant under permutation of the indices so as to write the cubic part 
of the pseudomomentum as 

- 
where 
general expression (including the marginal modes) for the variation of PC2) : 

= wa+wb+wr.  Starting from (5.1) and using ( 4 . 4 ~ )  and (4.6) gives the 

P(2)  = t C Im {F,(I$)* A ,  A ,  A,exp [ -i(Qa.bc)*t]}. 
abr 

while the variation of P(3) reads at leading order 
- P(3)  = 5 C Im [dab, A, A ,  A ,  7,bc exp (-iQ,,, r)] + o(A~).  

Conservation of the pseudomomentum requires P(z) + P(3)  = @A4) and leads thus to 
the relation between the interaction coefficients 

abc 

( 5 . 3 4  

where the equality f iabc  = 
pseudoenergy conservation leads to 

has been used. A similar treatment of the 

Car Pa. I$  + Cbr Pb. 1% + C,* E. I;? = - (Qabc uabc) * 9 (5.36) 

where uabC defines the cubic part of the pseudoenergy and where (3.6) has been used. 
Contrary to (5.3a), (5.3 b) is not general; if a mode, say a, is a marginal mode m,, the 

- - - 

substitution - 
Car Pa. 1;: + c, s, I:, + s,,, ‘go 

must be made. Notice that the interaction coefficients involved in (5.3) are not exactly 
those appearing in the three evolution equations of the modes a, b and c. They may 
however be related to them: for instance, if a is an unstable mode while b and c are 
stable, one can easily show that 

The relations (5 .3 )  are not useful in general since the coefficients 7,bc and uabC are 
difficult to evaluate: they may be deduced from the finite-amplitude expressions for the 
pseudomomentum and pseudoenergy (2.5) but this requires long calculations (see VV 
for an example). From a theoretical point of view, however, (5.3) can be used to obtain 
an expression for the cubic part of the invariants, starting from their quadratic part 
(VV). The most interesting conclusions that can be drawn from (5.3) occur when their 
right-hand sides vanish. In particular, this is the case when there is no basic flow or 

= (I:)*, I i P  = I T  and lab c* - - 
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when the basic velocity is constant in each layer (generalized Phillips models). 
Indeed the pseudomomentum and pseudoenergy are then exactly quadratic, whence 
Tabc = uabe = 0. Another possibility is that the three modes satisfy the resonance 
condition 

(5.4) 

so that Qabc = 0. Then, together with (4.5) and (5.4), ( 5 . 3 ~ )  and (5.3b) yield the 
factorization relation 

W ,  + o b  + W ,  = 0, - 

which shows that the interaction inside a resonant triad can be described using only one 
interaction coefficient. Classically, the factorization relation found involves the 
pseudoenergy rather than the pseudomomentum and takes the form 

(5.5b) 

The latter expression may be fruitfully formulated in a moving reference frame, the 
pseudoenergies, as well as the frequencies, being frame-dependent. 

In what follows, we concentrate on the baroclinic Rossby waves, i.e. the linearly 
stable modes. A wave can be considered as a basic flow whose stability may be 
investigated and (5.5) can be used to extend Hasselmann’s criterion on wave instability 
through resonant interaction (Hasselmann 1967). Consider a wave a which is disturbed 
by two stable modes b and c such that (4.5) and (5.4) are fulfilled. The evolution of the 
disturbing waves is studied by assuming that IA,I 9 IAbl, IAJ, so that IA,I can be taken 
constant. Solving the evolution equations for A, and A ,  shows that they grow 
exponentially for any amplitude A ,  provided that (e.g. Craik 1985) 

ryr;b > 0. (5.6) 

If this condition is satisfied, the wave a is unstable through nonlinear interaction with 
the modes b and c. From ( 5 . 5 ~ 2 )  and (5.5b), condition (5.6) can be re-formulated: 

The analogues of Arnol’d’s theorems demonstrating the stability of the basic flow are 
often based on the sign-definiteness of the pseudomomentum or of the pseudoenergy 
(e.g. Ripa 1992). If this sign-definiteness can be proved (as it is obviously the case when 
there is no basic flow), the above expressions can be simplified to give useful criteria 
for the instability of the wave a through resonant interaction with b and c:  if the 
pseudomomentum is sign-definite then instability of a occurs only if Jk,( > lkJ, IkJ, 
while if the pseudoenergy is sign-definite then instability occurs only if 10,1 > 1 0 ~ 1 ,  IwJ. 
This latter condition corresponds to Hasselmann’s criterion for a resting fluid. In the 
context of a multilayer quasi-geostrophic model, it has only been checked numerically 
for the two-layer model by Jones ( 1 9 7 9 ~ ) .  The demonstration given here clearly 
illustrates that this criterion is a general consequence of the conservation laws. 
Furthermore, it is simple to recover and extend Jones’ conclusion about the direction 
of energy transfer between waves and by noting that k, / (cb -cc) is invariant under 
circular permutation of the indices : the wave with the largest wavenumber possesses 
the intermediate phase velocity and hence the intermediate pseudowavenumber (given 
by (k2+R-2)1 /2 ,  where R is the mode deformation radius; see Jones 1979~) .  More 
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general stability conditions for parallel flow do not require the pseudomomentum or the 
pseudoenergy to be independently sign-definite : condition (2.6) ensures that the 
combination E-aP is positive definite, while (2.7) ensures that it is negative definite, 
at least for the zero-circulation disturbances we are dealing with (Mu Mu et al. 1994). 
If one of those criteria holds for a particular a, straightforward manipulation shows 
that a criterion for the instability of wave a can be written as 

(akb-wb)(akc-wc) > O 7  (5.7) 

stating that wave a has the largest apparent frequency in the frame moving with 
velocity a. The criterion involving only the wavenumbers (frequencies) is recovered 
when (2.6) or (2.7) hold with a = 00 (0). 

The important property of triad interactions in shear flow that constitutes the main 
subject of the present paper is the existence of the explosive resonant interaction (ERI) 
of baroclinic Rossby waves. This phenomenon, corresponding to the simultaneous 
growth of the three waves in the triad, leads to finite-time singularity in the wave 
amplitudes, and is a nonlinear instability mechanism for the basic parallel flow. It has 
been found by Cairns (1979) and Craik & Adam (1979) (see also Craik 1985) in the case 
of interacting interfacial gravity waves, and has been investigated by Romanova (1987) 
for a three-layer Phillips model. Here we discuss its general properties for the N-layer 
model before considering more particularly the generalized Phillips models in the next 
section. Consider three linearly stable waves a, b and c satisfying (4.5) and (5.4), whose 
evolution is governed by a system of three equations like (4.4a), coupled by the 
nonlinear terms. ERI occurs if the three interaction coefficients of these equations have 
the same sign. As can be seen from (5.5a), this is equivalent to the requirement that 
P,/k,, Pb/kb and P,/k, have the same sign, while the analogous condition derived from 
(5.5b) concerns the sign of Ea/wa, Eb/wb and Ec/wc. Taking into account the 
interaction condition (4.5) and the resonance condition (5.4), two equivalent necessary 
conditions for ERI may be stated : ERI occurs if the wave with the largest wavenumber 
(frequency) has opposite-signed pseudomomentum (pseudoenergy) from the other two 
waves. Evidently, the fulfilment of the stability conditions (2.6) or (2.7) must preclude 
ERI. This is obvious when the pseudomomentum or the pseudoenergy is sign-definite 
but it seems worth showing when (2.6) or (2.7) hold with a + 0,00. If Zy and Z z b  have 
the same sign, then (5.7) is satisfied and it is easy to prove, using ( 4 3 ,  (5.4) and the 
sign-definiteness of E - a P  that 

(aka - W a )  (akb - W b )  < 0, 

and thence that Zg and Zp are oppositely signed. The discussion above bears on the 
sign of the pseudomomentum or pseudoenergy of modes, which only involves the 
quadratic part of their general expression (2.5). This highlights the general statement 
that formal stability (i.e. sign-definiteness of the quadratic part of pseudomomentum 
or pseudoenergy) is sufficient to prevent ERI. In quasi-geostrophic models, however, 
conditions for formal and nonlinear stability are the same for disturbances with 
vanishing circulation. 

An interesting point may be noted by multiplying (3.4) by c, to obtain the expression 
for wave pseudoenergy : 

Ea = -Re((Xa,y-ca VXa,y> +k2(Xa, ca VxaI-(Xal ca VKTKXa}-Pca(Xa,Xa}/2). 
Following Becker & Grimshaw (1993), the invariance in translation of the condition 
for ERI can be used: in a frame such that Urn = min,,, Ui < 0 < U,, = maxi,, U,, c, V 
is negative definite if ca < Urn or c, > U,. In Becker & Grimshaw’s model involving 
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gravity waves, this condition ensures that the pseudoenergy of the modes is always 
positive, and hence that ERI is impossible. ERI requires then that Urn < c, < U, for 
at least one member of the triad, i.e. the existence of a critical level in the case of a 
continuous model. Here, owing to the p-effect, such a conclusion cannot be drawn a 
priori as the pseudoenergy is not sign-definite, even if c, is outside the range of U .  

The classical graphical method for the study of resonant triads using the dispersion 
curves (see Craik & Adam 1979; Tsutahara 1984) can be combined with the criterion 
above to locate explosively resonant triads in a simple manner: the redrawn dispersion 
curve and the original one along which its origin is moving must have the same sign 
of pseudomomentum, while the second original curve which is intersected by the 
redrawn curve (and which automatically has the largest wavenumber) must have an 
oppositely signed pseudomomentum. This procedure has proved very useful to get a 
first estimate of the regions where ERI is possible. 

Before turning to the study of generalized Phillips models, a remark is necessary 
about the modes belonging to the continuous spectrum that may exist when the basic 
flow is sheared in the y-direction. As mentioned in $3, these modes are singular at a 
critical level and, hence, the interaction coefficients (4.4 b)  are not regular functions of 
the continuous index. However, all the relations presented above are rigorous if the 
interaction coefficients are interpreted as distributions. This means that they have to be 
considered under an integral on the continuous index nu or, equivalently, on the 
corresponding phase velocity c, (see VV). Physically, this means that interaction 
between isolated modes of the continuous spectrum makes no sense whereas the 
interaction between packets of such modes may be analysed. Critical level singularity 
is indeed known to be an artificial difficulty raised by the spectral decomposition rather 
than a real physical property, at least for initial value problems (see Tung 1983). 

6. Generalized Phillips models 
6.1. N-layer model 

Generalized Phillips models are constructed from the model described in $2 by 
assuming that the basic velocity does not depend on y .  The matrices U and L are 
therefore constant and the solutions of the eigenvalue problem (3.2) are simply given 
by 

4,w = 4, sin (nu .Icy/l), 

for nu = 1,2, .... For simplicity we will ignore the A and consider the modes 
corresponding the same wavenumber k and index n. The index a is thus used to 
distinguish the N solutions of the algebraic eigenvalue problem 

(6.1) 

Here N, is simply the matrix deduced from N where the substitution V 2 t - K  = 
- (k2 + n2.Ic2/I2) is made. This formulation emphasizes that (6.1) only depends on Kand 
not on k and n individually. The phase velocity c, is a solution of the dispersion relation 

NK 4, = C, L-'q,. 

D(C, K )  det [MK(C)] = 0, (6.2) 

where we have introduced the matrix M,(c)  = NK-cL-'. Many different forms of the 
dispersion relation can be found, depending on the formulation of the eigenvalue 
problem. In general, D(c, K )  can be multiplied by any non-vanishing function Ac) 
without altering the solutions c,. Advantage may be taken of this freedom to choose 
a dispersion relation linked to the physical properties of the system. In particular, it is 
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often chosen so that its derivative with respect to the frequency is directly related to the 
mode (pseudo)energy (see Cairns 1979). In her study of the three-layer Phillips model, 
Romanova (1 987) proposed a dispersion relation whose derivative can be interpreted 
as the pseudomomentum of the mode but her formulation rests upon peculiar algebraic 
manipulation and cannot be easily extended. In the context of a non-rotating N-layer 
model, the same author has recently given a rigorous explanation of the link between 
the dispersion relation and the invariant of the linear system (Romanova 1992). Using 
the same type of arguments, we argue that a new dispersion relation, whose derivative 
with respect to c gives the pseudomomentum, can be constructed from (6.1). The 
derivation is similar to Romanova's although the physical system (and hence the 
matrix M,) is very different. Consider the new dispersion relation 

where [M,], designates the ith principal minor of M, i.e. the minor of its ith diagonal 
element. The derivative of (6.3) with respect to c, taken for c = c,, is 

Noting that 

and introducing the matrix fi, = -f M,, we can write 

To deduce the latter equality, we have used the fact that the first factor of the right- 
hand side is an invariant of M, and can thus be calculated in diagonal form. The 
minors of M, and of M, are related through 

[ ~ , ( C ) l i  = [MACII~ (b ~ j ? , )  

j i t  

so that (6.5) becomes 

(6.6) 
aD 
- = C QTJ[MK(c)li. ac 

When c = cur MK(c,)qa = 0 and one can show (see the Appendix) that 

[M,(C,)II d ,  1 = [ M K ( C J I l  d ,  I '  (6.7) 

Using this property in (6.4) and (6.6) we write the former equation as 

or, equivalently, 

As desired, the derivative of the new dispersion relation is directly related to the mode 
pseudomomentum. For a wave, it is equal to the ratio of the pseudomomentum to the 
potential enstrophy. This latter quantity being positive definite (and also a good 
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indicator of the physical importance of the mode), the sign of the pseudomomentum, 
essential for the ERI, is directly deduced from the dispersion relation. Compared to 
Romanova (1992), we have introduced the denominator in (6.3) as the sum of the 
principal minors while she only used a single minor. We argue that this choice renders 
unambiguous the sign of the pseudomomentum, at least for waves. 

We now turn to a discussion of the stability conditions and their relation with the 
linear problem and the ERI. First, notice that conditions (2.6) and (2.7) are very 
different: the former depends only on the basic velocity field, while the latter depends 
also on the channel geometry through KO. An equivalent condition to (2.6) can be 
stated as the search for a layer j such that 

Q;j( Ui - Ui) c 0, Qi + j .  (6.9) 

The equivalence is readily demonstrated: if (6.9) is satisfied, then (2.6) is also satisfied 
with a = U, + 6Qj, where 6 is an arbitrarily small positive constant. Conversely, (2.6) 
may be written 

17, < a < U,, 

where the layer indices rn and I are such that Q,, > 0 and Ql,  c 0. Taking the layer 
j corresponding to the velocity max, U ,  or min, U,,  we directly deduce (6.9). 

If (6.9) is not satisfied, linear stability is examined by checking whether there exists 
modes with non-zero imaginary part of c.  The linearized quasi-geostrophic models 
manifest a short-wave cut-off, meaning that all modes are stable for K > Kcr( U,, 8). 
Thus, if 

KO (x/1l2 > KJui, h), (6.10) 

the system is linearly stable for any disturbance. We shall now prove that if, in 
addition, ( 2 . 7 ~ )  is satisfied, then (2.7b) automatically follows, and therefore the system 
is also nonlinearly stable. Notice that, as for (2.6) and (6.9), ( 2 . 7 ~ )  is equivalent to 

Q,-,'( Ui - U j )  > 0, Qi =+ j ,  (6.1 1) 

for a particular j .  To show nonlinear stability, it must first be recognized that the 
optimum choice of yi in ( 2 . 7 ~ )  for the generalized Phillips models is 

yi = Q;j(Ui-a) > 0, i = 1,N. (6.12) 

From (2.7b), (3.1) and (6.2), we find that the matrix which has to be positive definite 
is simply - MK (a). Now, taking into account (6. l), the matrix N K o  can be expanded 
in the basis of the vector L-lq, following 

N 

N = C sL-'qa @ L-'q,. 
a-1 Pa 

KO 

Here c, and qa are the N eigenvectors and eigenvalues of (6.1) for K = KO; they 
represent stable waves as we have assumed (6.10). For any real vector x ,  it is easy to 
show that 

xTMKo(a) x = C Pa(c, - a)  xi, 

where x, is the coefficient of the expansion of x in the qa basis. The nonlinear stability 
condition (2.7 b)  is intimately connected with the linear eigenvalue problem; indeed, it 
is equivalent to finding an a such that 

Pa(ca-a) < 0, a = 1,N. (6.13) 

N 

a-1 
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This latter condition may be checked when the dispersion relation (6.3) is known. To 
prove that (6.1 1) leads to (6.13), we use the following argument: in the whole domain 
where KO > K,,, the ‘topology’ of the eigenvalues and eigenvectors does not change, 
in the sense that the ordering of the c, and the sign of the Pa do not change. Indeed, 
such changes only occur when two modes coalesce, namely when the limit K,, is 
crossed. Each mode may thus be characterized by its limit when KO+ 00, i.e. when 
l + O .  In this limit, the linear coupling between adjacent layers disappears and each 
mode a corresponds to a single layer i with 

ci + ui, 4, + ej, 4 + - QTi, (6.14) 

where e, is the basis unit vector. For finite KO > K,,, (6.13) transforms into 

Q;i(c, - a) > 0, i = 1, N .  (6.15) 

Here, c, refers to the phase velocity that tends to U,, and is such that 

C, = Ui - ei Qiy, 

where ei > 0 because dc,/dK may only change sign for KO < K,,.. For moderate value 
of KO, ei may be of order unity. If (6.11) is satisfied for a particular j ,  let us choose 

a = cl-SQ,,, with 0 < 6 4 1. 

Evidently, (6.12) and (6.15) are satisfied for i = j .  This is also the case for i +J  since 

QT,’( U ,  -a) = gi + Q;:(C, - cI) + SQTi Q,, > 0 

and 

ui - u,. 

Q;,’<ci - a) = QT,’<ci - cj) + Qj, > 0. 

The two inequalities hold for sufficiently small S because c, - cj has the same sign as 

When neither (6.9) nor (6.1 1) can be satisfied, nonlinear stability is not proved, even 
in the linearly stable domain defined by (6.10). As discussed in $6.2, this situation never 
occurs in the two-layer model, so that we may assume N 2 3. We now show that the 
system is actually unstable and that ERI provides the necessary nonlinear mechanism 
of instability. In fact, three layers a, b and c then exist with 

Qi;(ua - uc) Q$ v b  - uc) < 0. (6.16) 

Under the above hypothesis, Q,, and Qb, must have the same sign; otherwise, it is easy 
to show that (6.9) or (6.1 1) hold withj = a or b instead of c. By the same argument, Q,, 
has the opposite sign to Qay and Qb,. We consider a resonant triad of waves such that 
K >  KO and K D  1, which correspond to the three layers a, b and c. From the 
interaction and resonance conditions (4.5) and (5.4), and taking (6.14) into account, we 
obtain 

Together with (6.16), these relations show that k, is oppositely signed to ka and k,, i.e. 
that wave c is the largest-wavenumber member of the triad. From (6.14), it is also clear 
that the pseudomomentum of c is oppositely signed to the pseudomomentum of a and b. 
Using the criterion of 85, we conclude that ERI occurs in the triad a, b, c .  

In summary, we have shown that a generalized Phillips model is stable if (6.9) is 
satisfied or if (6.10) and (6.1 1) are satisfied. When this is not the case, the model is 
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FIGURE 1. Stability diagram of the two-layer Phillips model for F, = 0.24. The parameters are K t  = 
KO/(< F,)*’* and U t  = F,(U, - U,)/j3. Region I is linearly unstable for disturbance of wavenumber KO 
and the unshaded region is linearly unstable for smaller-scale disturbances. Regions I1 and I11 are 
proved nonlinearly stable by (6.9) and (6.1 I) ,  respectively. 

unstable whether by linear instability (if (6.10) is violated) or by ERI. Criteria (6.9) and 
(6.10) or equivalently, the original formulation (2.6) and (2.7) due to Ripa (1992, 1993) 
and Mu Mu et al. (1994), are thus necessary and sufficient conditions for nonlinear 
stability for the generalized Phillips model. Our developments show that (2.7b) is a 
direct consequence of (2.7a) (or (6.11)) when the model is linearly stable, i.e. when 
(6.10) is fulfilled. They also reveal the importance of the ERI of baroclinic Rossby 
waves : this rather simple mechanism suffices to explain all the regions in the parameter 
space where the model is unstable, albeit classed as stable by a linear (normal modes) 
analysis. 

6.2. Two-layer model 
The two-layer model is the original model whose linear stability was investigated by 
Phillips (1954). Ripa (1992, 1993) and Mu Mu et al. (1994) have studied its nonlinear 
stability in the case = 0, and in the general case, respectively. They conclude that 
linear and nonlinear stability criteria coincide, i.e. that the model is nonlinearly stable 
as soon as it is linearly stable. This result is immediately recovered using our preceding 
criteria: once (6.10) is assumed, one of the conditions (6.9) or (6.11) is necessarily 
satisfied, since they are complementary. It can be noted that the above-mentioned 
authors’ demonstration requires the extensive resolution of the linear instability 
problem, as well as the explicit formulation of (2.76). Here, on the other hand, the 
same conclusion is obtained through a simple inspection of the basic velocity and 
potential vorticity gradient fields. 

The stability conditions can be visualized on the classical picture of the marginal 
stability curve (e.g. Pedlosky 1987, $7.1 1) by taking the minimum wavenumber KO 
rather than a particular wavenumber K as the abscissa. A given model, defined by its 
basic velocity field and its geometry, is then represented by a characteristic point on the 
plane (KO, Us = U ,  - U2),  while the stability of a particular mode disturbing the model 
depends on the location of the point obtained by translating this characteristic point 
by 

AK = K -  KO = k2 + (tz2 - 1 ) ( ~ / 1 ) ~  > 0. 

A system is thus linearly stable when there is no linear instability domain to the right 
of its characteristic point. Figure 1 displays the stability diagram in the case 4 = 0.24 .  
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FIGURE 2. Dispersion relation of the two-layer Phillips model for 4 = F, = 1, = 1, U ,  = 1.07 
and U ,  = 0. The sign of the pseudomomentum of each mode is indicated. 

Region I is the usual linear instability region and the unshaded region to its left also 
corresponds to linearly unstable models in which only modes with sufficiently large AK 
grow. Regions I1 and I11 are nonlinearly stable by (6.9) and (6.1 I), respectively. It is 
clear from the figure that there is no possibility for a nonlinear instability where the 
model is linearly stable. 

Romanova (1987) has claimed that the two-layer model cannot experience ERI, 
arguing that the sum of two waves with the same pseudoenergy sign could not be a 
wave with oppositely signed pseudoenergy when the three waves constituted a resonant 
triad. However, her argument holds only if the three waves lie on the same side of the 
marginal stability curve, i.e. if their representative points are all located either in the 
unshaded region or in the regions I1 and 111. Thanks to the graphical method, it is clear 
from figure 2, which displays a typical dispersion curve with the pseudomomentum 
signs, that ERI is possible provided that one wave is on one side of the unstable domain 
(where both frequencies are conjugate) and the other two waves are on the other side. 
Thus ERI can occur, but only when linear instability occurs too. The parameters 
corresponding to this figure are 

4 = F, = 1, p =  1, U ,  = 1.07, U ,  = 0, 

and the flow is slightly supercritical. We have numerically searched for triads 
undergoing ERI in these conditions. The three waves a, b and c are defined by their 
meridional indices 

n, = 0.21, n, = 0.61, n, = 0.81, 

and by their branch on the dispersion curve shown in figure 2: a belongs to the dashed 
branch with P, < 0, b belongs to the solid branch with P, < 0 and c belongs to the 
dotted branch with P, > 0. In a resonant triad, the wavenumber k ,  always has the 
largest magnitude; it can be considered negative so that k,  and k,  are positive. Figure 
3 presents the wavenumbers k,  and - k,  and the interaction coefficients Zp, ZC,a and I:b 
as a function of the wavenumber k,. The normal modes have been normalized so that 
the potential enstrophy of each mode is equal to unity. It can be seen from the figure 
that the three interaction coefficients rapidly vary with the triad wavenumbers but that 
they all have the same order. For k,  + 0.86, wave a tends to marginal stability and an 
interaction coefficient tends to infinity, as expected. In this region, the new variables 
introduced by Romanova (1994) have to be used to investigate the behaviour of the 
interacting waves. The cusp seen on the three interaction coefficients curves for k ,  = 
0.13 is actually due to a local vanishing of the coefficients. It is obvious from (5.5) that 
the three coefficients have to vanish at the same time. Note that during the calculation, 
we have used ( 5 . 5 )  as a check of the numerical exactness of our resolution. 
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FIGURE 3. Wavenumbers k ,  (dashed curve), k ,  (dash-dotted curve) and interaction coefficients I:: 
(solid curve), I? (dashed curve), I : ,  (dash-dotted curve) of an explosive resonant triad in the two- 
layer Phillips model, as a function of the wavenumber k,. The basic flow parameters are those of 
figure 2 and the wave meridional indices are no = 0.21, nb = 0.61, n, = 0.81. Normalization is based 
on the wave potential enstrophy. 

6.3. Three-layer model 
The linear stability of this model has been studied by Davey (1977), while Romanova 
(1987) has considered the ERI when the model is unbounded in the meridional 
direction. Solving the linear eigenvalue problem and using the criteria (6.9) and (6.1 l), 
we can investigate the nonlinear stability of a channel model. For 4 = F, = 4 = F the 
only parameters describing the system can be denoted 

K,* = Ko/F,  Uzl = F(U,- U2)//3,  U,*, = F(U,- U,)//?. 

Straightforward calculation shows that it is impossible to find a layer j satisfying (6.9) 
or (6.11) if and only if 

17,: > 1 and 0 < Uz2 < min(1, Uzl- l),  (6.17) 

or -1 < U:, < 0 and LJ;, < Uz1-1. (6.18) 

In these situations, the system is nonlinearly unstable even when it is linearly stable, and 
ERI plays a leading part in the instability. In other situations, the system is nonlinearly 
stable as soon as it is linearly stable. It is worth mentioning that Q,, is oppositely signed 
to Q,, and Q,, when (6.17) or (6.18) is satisfied, while the converse is not true. 

To illustrate this conclusion, we show the stability diagrams corresponding to the 
three-layer model in figure 4.  Figures 4(a)-4(d) display the stability characteristics in 
the plane ( K t ,  Uf,) for U,*, = 0.5, 1.5, 3 and -0.5, respectively. The conventions are 
the same as for the two-layer model; in particular, the unshaded regions are unstable 
for sufficiently small scales of the disturbances. In figures 4(b)  and 4(c) ,  one sees that 
such regions extend to infinity as U,*, + 0-. This is related to the indefinite increase of 
the short-wave cut-off, the physical explanation for which is given by Davey (1977). In 
figure 4(6,  d ) ,  a new type of region appears, represented by hatched zones. It 
corresponds to the fulfilment of (6.17) (for figures 4 b  and 4c)  or of (6.18) (for figure 
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FIGURE 4. (a) Stability diagram of the three-layer Phillips model for 4 = 4 = 4 and: (a) Ua, = 0.5, 
(b)  1.5, ( c )  3, (d) -0.5. Region 1 is linearly unstable for disturbance of wavenumber KO and the 
unshaded region is linearly unstable for smaller-scale disturbances. Regions 11 and I11 are proved 
nonlinearly stable by (6.9) and (6.1 I),  respectively. The hatched regions in (b-d) are unstable through 
explosive resonant interaction. 
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FIGURE 5. Dispersion relation of the three-layer Phillips model for 4 = 6 = F, = 1, B = 1, 
U ,  = 1.5, U ,  = 0 and U3 = -0.25. The sign of the pseudomomentum of each mode is indicated. 
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0 I 2 

0 I 2 

kll 

FIGURE 6. Wavenumbers k, (dashed curve), k, (dash-dotted curve) and interaction coefficients I:’ 
(solid curve), I? (dashed curve), I:, (dash-dotted curve) of an explosive resonant resonant triad in the 
three-layer Phillips model, as a function of the wavenumber k,. The basic flow parameters are thosc 
of figure 5 and the wave meridional indices are no = 1,  nb = 3, nr = 4. Normalization is based on the 
wave potential enstrophy. 

4 4  in linearly stable conditions. In such region, ERI renders the system nonlinearly 
unstable. Note that we have confirmed our formulation of the criteria (6.9) and (6.11) 
by recovering the same stability diagrams by a direct numerical search for an a such 
that (2.6) or (2.7) is satisfied. The possibility of ERI in linearly stable flow when (6.17) 
holds is evident in figure 5 which presents the dispersion relation with the sign of the 
wave pseudomomentum in the case 

F=1, p=1, U , = 1 . 5 ,  U,=0,  U3=-0.25 

(see also figure 4b). Indeed, resonant triads verifying the ERI conditions of $ 5  are 
readily found, even if KO > K,, z 1.5. We have numerically searched for such triads a, 
b and c in the case of a linearly stable channel with 1 = 0.4. The meridional indices have 
been taken to be 

n , =  1, n, = 3, n , = 4  

and the wavenumbers k, and k,, as well as the interaction coefficients, are displayed in 
figure 6 as functions of k,. Each wave corresponds to a distinct branch in the dispersion 
diagram shown in figure 5 and the correspondence is easily seen as we have used the 
same line styles in both figures. For instance, c is the wave with the largest wavenumber 
magnitude and has a positive pseudomomentum. The interaction coefficients clearly 
possess a maximum for k,, k, z 1 while k, z 0.3. The fastest growing disturbances can 
thus be expected to have lengthscales of this order. However, it is interesting to note 
that ERI may occur for waves with arbitrarily large wavenumbers. The short-wave cut- 
off induced by the /3-effect is thus only a linear feature when (6.17) or (6.18) is satisfied. 
Figure 7 displays the analogue of figure 6 for 

U, = -0.5, U,  = 0, U3 = 2, 

the other parameters being unchanged. ERI can then occur in linearly stable condition 
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0 I 2 

kll 

FIGURE I .  Same as figure 6 but with the basic flow parameters U ,  = -0.5, U ,  = 0 and U,  = 2. 

as criterion (6.18) is fulfilled (see also figure 4d). Although the shear condition is fairly 
different, the interaction coefficients are very similar to those found in the preceding 
example. 

7. Discussion 
This paper addresses the question of nonlinear interaction between baroclinic 

Rossby waves in multilayer quasi-geostrophic flow. Greatest attention is paid to waves 
propagating on a parallel shear flow, and to the role played by the interaction on the 
stability of the basic flow. The eigenvalue problem satisfied by the normal modes is 
discussed in detail, and a bound on the phase velocity of unstable modes is derived 
from the vanishing of pseudomomentum (equation (3.4)). The equations describing 
nonlinear interactions are deduced using a rigorous expansion of the basic equations 
in normal modes, with the orthogonality relations in the sense of pseudomomentum 
(Held 1985) as projection operators. The expansion is sufficiently general to involve 
stable, unstable, and marginally stable modes, and is thus well suited to analyse the 
interactions in a linearly unstable flow. Properties of the interaction coefficients are 
deduced from the nonlinear conservation laws of pseudoenergy and pseudomomentum 
without manipulation of the explicit expression for the coefficients. This demonstrates 
the arbitrariness of the usual classification between conservative and non-conservative 
interactions (e.g. Craik 1985) : in a dissipationless fluid, the interactions may always be 
seen as conservative, provided that the ad hoc quantity is considered. 

In the case of resonant triads of baroclinic Rossby waves, the properties of these 
interaction coefficients permit the discussion of two important phenomena : wave 
instability and explosive resonant interaction (ERI). The latter phenomenon occurs in 
resonant triads where the wave with the largest wavenumber has oppositely signed 
pseudomomentum to the other two. It constitutes a nonlinear instability mechanism 
capable of amplifying infinitesimal disturbances. We discuss its importance in 
connection with the recent results on the nonlinear stability of multilayer quasi- 
geostrophic flow due to Mu Mu (1991), Ripa (1992, 1993) and Mu Mu er al. (1994). 
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We then consider the generalized Phillips model, i.e. a multilayer model with constant 
velocity in each layer, and derive a particularized formulation of the sufficient stability 
conditions. The system is proved to be nonlinearly stable if it is linearly stable and if 
there exists a layerj such that Q;$( U, - U j )  is sign definite for all layers i + j .  Moreover, 
we show that ERI necessarily occurs in the flow if this condition is not satisfied. The 
stability criterion is therefore a necessary and sufficient condition of nonlinear stability. 

For the two-layer Phillips model, the result of Mu Mu et al. (1994), namely the 
equivalence of linear and nonlinear stability, is recovered. Consequently, ERI may 
only occur when the flow is in linearly supercritical conditions. However, it can play 
a significant role in that case by amplifying waves which are predicted stable by linear 
theory. In the three-layer model, situations are found where the flow is linearly stable 
and ERI of baroclinic Rossby waves acts as nonlinear destabilizing mechanism. ERI 
is hence in this case of crucial importance in baroclinic instability. In this respect, it 
would be interesting to examine the saturation of the instability generated through 
ERI. Of course, the triad interaction hypothesis breaks down long before the explosion 
time and a larger number of amplitude equation would be necessary to follow the long- 
term evolution of the instability. An alternative approach to a numerical solution 
would be the use of the powerful technique developed by Shepherd (1988, 1993) to 
study the saturation of the linear instability in the two-layer model. 

Another point worthy of attention is the ERI involving one or more waves near 
marginal stability. We have mentioned that such a wave cannot be isolated from the 
wave with which it coalesces at the marginally stable point, and that the new variables 
recently proposed by Romanova (1994) must be introduced. The behaviour of such a 
system involving at least four amplitude equations should be investigated to decide 
whether it involves instability of the basic flow. The question of interacting triads 
partially constituted of unstable modes also seems of great interest, as it may have 
direct consequences on the nonlinear evolution of baroclinic instability. 

The research reported on in this paper could be extended to other models of 
geophysical interest, in particular those for which nonlinear stability conditions have 
been established. The two-layer non-geostrophic model, whose linear stability has been 
carefully studied by Sakai (1 989), could be considered using Ripa’s general stability 
conditions (Ripa 1991). These conditions only ensure formal stability but, as already 
mentioned this is sufficient to preclude ERI. It would also be interesting to examine the 
interactions between Rossby waves in Eady’s model of baroclinic instability. Mu Mu 
& Shepherd (1994) have recently found a nonlinear stability condition which differs 
significantly from the linear one. One may expect ERI to play a role in Eady’s model 
similar to one explained in the present paper. However, there seems to be no doubt that 
critical levels will prove fundamental in such a continuous model; the nonlinear 
interaction involving packets of singular modes is thus a preliminary point to consider. 

The author wishes to thank F. Vial for a number of valuable discussions and C. 
CondC for his help with the numerical calculation. Thanks are also due to S. G. 
Llewellyn-Smith and P. Ripa for their helpful comments on the first draft of the paper. 
The computations presented in this paper were funded by the ‘Institut du 
Dkveloppement et des Ressources en Informatique Scientifique’. 

Appendix. Demonstration of the matrix property (6.7) 
Consider a symmetric N x  N matrix M and the vector q such that 

Mq = 0. 
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The elements of M may be complex, and it is important to note that M = MT is 
required and not M = M* (in our case of interest, only the diagonal elements of M are 
complex). We shall show that 

where [MIk is the minor of the diagonal element k of M. Denoting by mi, and q, generic 
elements of M and q, respectively, we decompose (A 1) into the three relations 

ql+mlk q k + m T q  = O, (A 3 4  

mklql+mkkqk+rnEq= O, (A 3 b )  

mlq l+mkq ,+Mq= 0, (A 3 4  

where we have introduced the vectors m,  = (m,JT, mk = (mjk)T, Q = (qJT , j  + 1, k and 
the ( N -  2) x ( N -  2) matrix M which is obtained from M by removing the rows and 
columns 1 and k. The symmetry of M has been used to write (A 3 ) .  From (A 3 c )  we 
can express q as a function of q1 and qk. Introducing this expression in (A 3a)  and 
(A 3 b) and multiplying the resulting equations, we find 

qf(m,, - m: M-lrnJ = qi(mkk- rn: /W1mk). 

(mkk-m: W ' m k )  = (det /@)-' [MI,  

(A 4) 

(A 5 )  

It is now easy to prove that 

by noting the successive equalities 

[MI, = det e: s) = det { ( 
Introducing (A 5 )  and the analogous relation for (m,, -m: Wlrn,) in (A 4) leads then 
to (A 2). 
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